ATP-dependent efflux of calcein by the multidrug resistance protein (MRP): no inhibition by intracellular glutathione depletion.

نویسندگان

  • N Feller
  • H J Broxterman
  • D C Währer
  • H M Pinedo
چکیده

In this study we report that the multidrug resistance protein (MRP) transports calcein from the cytoplasmic compartment of tumor cells, in contrast to P-glycoprotein which transports calcein acetoxymethyl ester from the plasmamembrane. The transport of calcein by MRP is ATP-dependent and is inhibited by probenecid and vincristine. Intracellular glutathione (GSH) depletion which occurred when cells were exposed to buthionine sulfoximine had no effect on the efflux of calcein, whereas it reversed the daunorubicin accumulation deficit in MRP overexpressing tumor cells. In conclusion, ATP-dependent transport of calcein and possibly other organic anions by MRP is not inhibited by a large decrease of the intracellular GSH concentration, that inhibits daunorubicin efflux by MRP.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential multidrug resistance-associated protein 1 through 6 isoform expression and function in human intestinal epithelial Caco-2 cells.

Multidrug resistance-associated protein (MRP) isoforms 1 through 6 mRNA are expressed in the human intestine and Caco-2 cells. In Caco-2 cells, the rank order for mRNA expression was MRP2 > or = MRP6 > MRP4 > or = MRP3 > MRP1 = MRP5. The functional expression of MRP-like activity was quantified as the efflux of the fluorescent probe calcein from confluent, polarized monolayers of Caco-2 cells. ...

متن کامل

Interactions of ofloxacin and erythromycin with the multidrug resistance protein (MRP) in MRP-overexpressing human leukemia cells.

To investigate interactions between the multidrug resistance protein (MRP) and antimicrobial agents, we examined the effects of 12 agents on vincristine sensitivity and efflux of the calcein acetoxy-methyl ester (calcein-AM) of a MRP substrate in MRP-overexpressing cells. Only ofloxacin and erythromycin enhanced sensitivity with increased intracellular vincristine accumulation and inhibited the...

متن کامل

Role of glutathione in the multidrug resistance protein 4 (MRP4/ABCC4)-mediated efflux of cAMP and resistance to purine analogues.

Multidrug resistance protein 4 (MRP4/ABCC4) is a member of the MRP subfamily, which in turn is a member of the superfamily of ATP-binding-cassette (ABC) transporters. Within the MRP subfamily, ABCC4,ABCC5 (MRP5), ABCC11 (MRP8) and ABCC12 (MRP9) have similar predicted membrane topologies. All lack the additional transmembrane domain, TMD(0), which is present in the other MRPs. Using cells stably...

متن کامل

Modulation of multidrug resistance protein expression in porcine brain capillary endothelial cells in vitro.

Multidrug resistance-associated protein (MRP) is a transport system that is involved in the elimination of xenobiotics and biologically active endogenous substrates. Recently, the presence of MRP has been demonstrated in cultured brain capillary endothelial cells (BCECs). The time-dependent, functional expression of MRP in porcine BCECs was investigated to assess the value of this cell culture ...

متن کامل

Resistance to mitoxantrone in multidrug-resistant MCF7 breast cancer cells: evaluation of mitoxantrone transport and the role of multidrug resistance protein family proteins.

We examined the role of multidrug resistance protein (MRP) 1 (ABCC1) in the emergence of mitoxantrone (MX) cross-resistance in a MCF7 breast cancer cell line selected for resistance to etoposide. The resistant cell line, MCF7/VP, expresses high levels of MRP1, whereas the parental cell line, MCF7/WT, does not. MCF7/VP cells are 6-10-fold cross-resistant to MX when compared with MCF7/WT cells. D...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • FEBS letters

دوره 368 2  شماره 

صفحات  -

تاریخ انتشار 1995